ADMICRO
Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3\) khi
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐặt \({2^x} = t\,\,\left( {t > 0} \right)\). Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) (1) trở thành: \({t^2} - 2m\,t + 2m = 0\) (2)
Phương trình (1) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3 \Leftrightarrow \) Phương trình (2) có hai nghiệm \({t_1}\;,\;{t_2}\) thỏa \({t_1},{t_2} > 0,\,\,\,\,\,{t_1}{t_2} = {2^{{x_1} + {x_2}}} = {2^3} = 8\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\2m = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m > 0\\2m = 8\end{array} \right. \Leftrightarrow m = 4\).
Chọn: A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK