Cho hàm số \(y = \dfrac{{m{x^3}}}{3} - {x^2} + 2x + 1 - m.\) Tập hợp các giá trị của m để hàm số nghịch biến trên \(\mathbb{R}\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+) Với \(m = 0\) ta có \(y = - {x^2} + 2x + 1\) là hàm số bậc hai
\( \Rightarrow \)Hàm số \(y = - {x^2} + 2x + 1\) không nghịch biến trên \(\mathbb{R}\) \( \Rightarrow m = 0\) không thỏa mãn.
+) Với \(m \ne 0\) ta có: \(y = \dfrac{{m{x^3}}}{3} - {x^2} + 2x + 1 - m \Rightarrow y' = m{x^2} - 2x + 2\)
Để hàm số nghịch biến trên \(\mathbb{R}\) thì \(y' \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\1 - 2m \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m \ge \dfrac{1}{2}\end{array} \right. \Leftrightarrow m \in \emptyset \)
Kết luận: \(m \in \emptyset \).
Chọn: D