Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm\(A'\) trên cạnh SA sao cho \(SA' = \dfrac{1}{3}SA\). Mặt phẳng qua \(A'\) và song song với đáy của hình chóp cắt các cạnh SB, SC, SD lần lượt tại B’, C’, D’. Tính theo V thể tích khối chóp S.A’B’C’D’ ?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDo \(\left( {A'B'C'D'} \right)//\left( {ABCD} \right)\) và \(SA' = \dfrac{1}{3}SA\) nên \(\dfrac{{SA'}}{{SA}} = \dfrac{{SB'}}{{SB}} = \dfrac{{SC'}}{{SC}} = \dfrac{{SD'}}{{SD}} = \dfrac{1}{3}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\dfrac{{{V_{S.A'C'D'}}}}{{{V_{S.ACD}}}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\\\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{V_{S.A'C'D'}} = \dfrac{1}{{27}}{V_{S.ACD}} = \dfrac{1}{{54}}{V_{S.ABCD}}\\{V_{S.A'B'C'}} = \dfrac{1}{{27}}{V_{S.ABC}} = \dfrac{1}{{54}}{V_{S.ABCD}}\end{array} \right.\\ \Rightarrow {V_{S.A'B'C'D'}} = \dfrac{1}{{27}}{V_{S.ABCD}} = \dfrac{1}{{27}}V\end{array}\).
Chọn: C