Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: \(y = {x^3} - 3x\) ;\(y = x\). Tính \(S\) ?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiải phương trình \({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 2\end{array} \right.\)
Diện tích cần tìm là:
\(\begin{array}{l}S = \int\limits_{ - 2}^2 {\left| {{x^3} - 3x - x} \right|dx} = \int\limits_{ - 2}^2 {\left| {{x^3} - 4x} \right|dx} \\\,\,\,\, = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx} + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \\\,\,\,\, = \int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} - \int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} \\\,\,\,\, = \left. {\left( {\dfrac{1}{4}{x^4} - 2{x^2}} \right)} \right|_{ - 2}^0 - \left. {\left( {\dfrac{1}{4}{x^4} - 2{x^2}} \right)} \right|_0^2\\\,\,\,\, = \left( {0 - \left( { - 4} \right)} \right) - \left( {\left( { - 4} \right) - 0} \right) = 8\end{array}\)
Chọn: B