Một hình lập phương có dện tích mặt chéo bằng \({a^2}\sqrt 2 \). Gọi \(V\) là thể tích khối cầu và \(S\) là diện tích mặt cầu ngoại tiếp hình lập phương nói trên. Khi đó tích \(S.V\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi hình lập phương \(ABCD.A'B'C'D'\) cạnh \(x\) có diện tích mặt chéo \({S_{ACC'A'}} = {a^2}\sqrt 2 \)
Ta có \(AC = \sqrt {A{D^2} + D{C^2}} = x\sqrt 2 \) nên \({S_{ACC'A'}} = AC.AA' = x\sqrt 2 .x = {a^2}\sqrt 2 \Rightarrow x = a\)
Bán kính mặt cầu ngoại tiếp hình lập phương là \(R = \frac{{a\sqrt 3 }}{2}\)
Nên thể tích khối cầu ngoại tiếp hình lập phương là \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{a\sqrt 3 }}{2}} \right)^3} = \frac{{\sqrt 3 \pi {a^3}}}{2}\)
Diện tích mặt cầu ngoại tiếp hình lập phương là \(S = 4\pi {R^2} = 4\pi .{\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = 3\pi {a^2}\)
Suy ra \(S.V = 3\pi {a^3}.\frac{{\sqrt 3 }}{2}\pi {a^3} = \frac{{3\sqrt 3 }}{2}{\pi ^2}{a^5}\)
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Minh Xuân