Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại\(A\) và \(D\), \(AD = DC = a\). Biết \(SAB\) là tam giác đều cạnh \(2a\) và mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Tính cô sin của góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(H,E\) lần lượt là trung điểm của \(AB,BC\).
Kẻ \(HF \bot SE\).
Do \(\Delta SAB\) đều và nằm trong mặt phẳng vuông góc với đáy nên \(SH \bot \left( {ABCD} \right)\).
Do \(AB = 2a,AD = DC = a,\widehat A = \widehat D = {90^0}\) nên
\(CH = HB = a,CH \bot AB,HE \bot BC\).
Ta có: \(\left\{ \begin{array}{l}CH \bot AB\\CH \bot SH\end{array} \right. \Rightarrow CH \bot \left( {SAB} \right)\)
Lại có \(BC \bot HE,BC \bot SH \Rightarrow BC \bot \left( {SHE} \right) \Rightarrow BC \bot HF\)
Mà \(HF \bot SE\) nên \(HF \bot \left( {SBC} \right)\)
Do đó góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\) là \(\widehat {\left( {HC,HF} \right)} = \widehat {FHC}\) (vì \(\widehat {FHC} < \widehat {HFC} = {90^0}\))
Xét tam giác \(SAB\) đều cạnh \(2a\) nên \(SH = \dfrac{{2a.\sqrt 3 }}{2} = a\sqrt 3 \).
Tam giác \(HBC\) vuông cân tại \(H\), có \(HB = HC = a\) nên \(HE = \dfrac{{a\sqrt 2 }}{2}\).
Xét tam giác \(\Delta SHE\) vuông tại \(H\) có \(HF\) là đường cao nên
\(\dfrac{1}{{H{F^2}}} = \dfrac{1}{{S{H^2}}} + \dfrac{1}{{H{E^2}}} \Rightarrow HF = \dfrac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \dfrac{{a\sqrt 3 .\dfrac{{a\sqrt 2 }}{2}}}{{\sqrt {3{a^2} + \dfrac{{{a^2}}}{2}} }} = \dfrac{{a\sqrt {21} }}{7}\)
Tam giác \(HFC\) vuông tại \(F\) có \(HF = \dfrac{{a\sqrt {21} }}{7},HC = a\) nên \(\cos \widehat {FHC} = \dfrac{{HF}}{{HC}} = \dfrac{{a\sqrt {21} }}{7}:a = \dfrac{{\sqrt {21} }}{7}\).
Vậy cô sin của góc hợp bởi hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SAB} \right)\) là \(\dfrac{{\sqrt {21} }}{7}\).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Hà Huy Tập