Cho \(a;b\) là các số thực thỏa mãn \(a > 0\) và \(a \ne 1\) biết phương trình \({a^x} - \frac{1}{{{a^x}}} = 2\cos \left( {bx} \right)\) có 7 nghiệm thực phân biệt. Tìm số nghiệm thực phân biệt của phương trình \({a^{2x}} - 2{a^x}\left( {{\mathop{\rm cosbx}\nolimits} + 2} \right) + 1 = 0\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}{a^{2x}} - 2{a^x}\left( {{\mathop{\cos bx}\nolimits} + 2} \right) + 1 = 0 \Leftrightarrow {a^x} + \frac{1}{{{a^x}}} = 2\left( {\cos bx + 2} \right)\\ \Leftrightarrow {\left( {{a^{\frac{x}{2}}}} \right)^2} + \frac{1}{{{{\left( {{a^{\frac{x}{2}}}} \right)}^2}}} - 2 = 2\left( {\cos bx + 1} \right) \Leftrightarrow {\left( {{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}}} \right)^2} = 2.2{\cos ^2}\frac{{bx}}{2}\\ \Leftrightarrow \left[ \begin{array}{l}{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}} = 2\cos \frac{{bx}}{2}\\{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}} = - 2\cos \frac{{bx}}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{a^{\frac{x}{2}}} - \frac{1}{{{a^{\frac{x}{2}}}}} = 2\cos \frac{{bx}}{2}\,\,\,\left( 1 \right)\\{a^{ - \frac{x}{2}}} - \frac{1}{{{a^{ - \frac{x}{2}}}}} = 2\cos \left( {\frac{{b\left( { - x} \right)}}{2}} \right)\,\,\left( 2 \right)\end{array} \right.\end{array}\)
Theo bài ra ta có phương trình (1) có 7 nghiệm phân biệt.
Ta thấy nếu \({x_0}\) là nghiệm của (1) \( \Rightarrow \left( 2 \right)\) có nghiệm \( - {x_0}\).
Xét \(f\left( 0 \right) = 1 - 2.1\left( {1 + 2} \right) + 1 = - 4 \ne 0 \Rightarrow x = 0\) không là nghiệm của (1) \( \Rightarrow {x_0} \ne 0 \Rightarrow - {x_0} \ne {x_0}\,\,\forall {x_0}\).
Vậy phương trình đề bài có tất cả 14 nghiệm.
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Hà Huy Tập