Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của \(m\) để phương trình \(\left| {f\left( {\left| {x - 2} \right|} \right) + 1} \right| - m = 0\) có \(8\) nghiệm phân biệt trong khoảng \(\left( { - 5;5} \right)?\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiSố nghiệm của phương trình \(\left| {f\left( {\left| {x - 2} \right|} \right) + 1} \right| - m = 0 \Leftrightarrow \left| {f\left( {\left| {x - 2} \right|} \right) + 1} \right| = m\) chính là giao điểm của đồ thị hàm số \(y = \left| {f\left( {\left| {x - 2} \right|} \right) + 1} \right|\) và đường thẳng \(y = m.\)
Ta vẽ đồ thị hàm số \(y = \left| {f\left( {\left| {x - 2} \right|} \right) + 1} \right|\) lần lượt theo các bước như sau:
+ Tịnh tiến đồ thị hàm số \(y = f\left( x \right)\) sang phải \(2\) đơn vị ta được đồ thị hàm số \(y = f\left( {x - 2} \right)\)
+ Bỏ đi phần đồ thị của \(f\left( {x - 2} \right)\) nằm bên trái \(Oy,\) lấy đối xứng phần đồ thị phía bên phải \(Oy\) qua \(Oy,\) ta được đồ thị hàm số \(y = f\left( {\left| {x - 2} \right|} \right)\)
+ Tịnh tiến đồ thị hàm số \(y = f\left( {\left| {x - 2} \right|} \right)\) lên trên \(1\) đơn vị ta được đồ thị hàm số \(y = f\left( {\left| {x - 2} \right|} \right) + 1\)
+ Tiếp tục giữ nguyên phần đồ thị phía trên \(Ox,\) lấy đối xứng phần đồ thị phía dưới \(Ox\) qua \(Ox\) rồi gạch bỏ phần đồ thị phía dưới \(Ox\) ta được đồ thị hàm số \(y = \left| {f\left( {\left| {x - 2} \right|} \right) + 1} \right|\) như hình vẽ trên.
Như vậy đường thẳng \(y = m\) cắt đồ thị hàm số \(y = \left| {f\left( {\left| {x - 2} \right|} \right) + 1} \right|\) tại \(8\) điểm phân biệt khi \(m = 1.\)
Do đó có một số nguyên \(m\) thỏa mãn đề bài.
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Hà Huy Tập