Cho hình chóp S.ABC có đáy ABC là tam giác với \(AB = 2cm,AC = 3cm,\;\angle BAC = {60^0},SA \bot \left( {ABC} \right).\)Gọi \({B_1},{C_1}\) lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm \(A,B,C,{B_1},{C_1}.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi O là tâm đường tròn ngoại tiếp tam giác ABC, đường kính AD.
Ta chứng minh O là tâm mặt cầu đi qua 6 điểm A, B, C, \({B_1},{C_1}\) và D:
Ta có: \(\left\{ \begin{array}{l}CD \bot AC\\CD \bot SA\,\,\left( {do\,\,SA \bot \left( {ABC} \right)} \right)\end{array} \right.\,\,\, \Rightarrow CD \bot \left( {SAC} \right) \Rightarrow CD \bot A{C_1}\)
Do \(\left\{ \begin{array}{l}A{C_1} \bot SC\\A{C_1} \bot CD\end{array} \right. \Rightarrow A{C_1} \bot \left( {SCD} \right) \Rightarrow A{C_1} \bot {C_1}D\)
\( \Rightarrow {C_1}\) thuộc mặt cầu tâm O đường kính AD
Tương tự, \({B_1}\) thuộc mặt cầu tâm O đường kính AD
Hiển nhiên, \(A,\;B,\;D,\;C\) thuộc mặt cầu tâm O đường kính AD
\( \Rightarrow O\)là tâm mặt cầu đi qua 6 điểm \(A,\;B,\;C,\;{B_1},\;{C_1},\;D\)
\( \Rightarrow O\)là tâm mặt cầu đi qua 5 điểm \(A,\;B,\;C,\;{B_1},\;{C_1}\)
Tính bán kính R của mặt cầu đi qua 5 điểm \(A,\;B,\;C,\;{B_1},\;{C_1}\):
Xét tam giác ABC: \(BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos \angle A} = \sqrt {4 + 9 - 2.2.3.\cos 60^\circ } = \sqrt 7 \left( {cm} \right)\)
\(\begin{array}{l}{S_{ABC}} = \frac{{AB.AC.BC}}{{4R}} = \frac{1}{2}AB.AC.\sin \angle A \Rightarrow \frac{{2.3.\sqrt 7 }}{{4R}} = \frac{1}{2}.2.3.\sin {60^0}\\ \Leftrightarrow \frac{{3\sqrt 7 }}{{2R}} = \frac{{3\sqrt 3 }}{2} \Leftrightarrow R = \frac{{\sqrt 7 }}{{\sqrt 3 }}\left( {cm} \right)\end{array}\)
Thể tích khối cầu: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\sqrt {\frac{7}{3}} } \right)^3} = \frac{{28\sqrt 7 \pi }}{{9\sqrt 3 }} = \frac{{28\sqrt {21} \pi }}{{27}}\left( {c{m^3}} \right)\).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Nguyên Hãn