Tập nghiệm của bất phương trình sau \({\log _{\dfrac{1}{3}}}\dfrac{{1 - 2x}}{x} > 0\) có dạng \(\left( {a;b} \right)\). Tính \(T = 3a - 2b\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp:
- Giải bất phương trình logarit: \({\log _a}f\left( x \right) > b \Leftrightarrow 0 < f\left( x \right) < {a^b}{\mkern 1mu} {\mkern 1mu} \left( {khi{\mkern 1mu} {\mkern 1mu} 0 < a < 1} \right)\).
- Giải bất phương trình tìm \(x\), từ đó kết luận tập nghiệm của bất phương trình và suy ra \(a,{\mkern 1mu} {\mkern 1mu} b\).
- Thay \(a,{\mkern 1mu} {\mkern 1mu} b\) vừa tìm được để tính giá trị biểu thức \(T = 3a - 2b\).
Cách giải:
Ta có:
\(\begin{array}{*{20}{l}}{{{\log }_{\dfrac{1}{3}}}\dfrac{{1 - 2x}}{x} > 0{\rm{\;}} \Leftrightarrow 0 < \dfrac{{1 - 2x}}{x} < 1}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < \dfrac{{1 - 2x}}{x}}\\{\dfrac{{1 - 2x}}{x} < 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < \dfrac{1}{2}}\\{\dfrac{{1 - 3x}}{x} < 0}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < \dfrac{1}{2}}\\{0 < x < \dfrac{1}{3}}\end{array}} \right. \Leftrightarrow 0 < x < \dfrac{1}{3}}\end{array}\).
\( \Rightarrow \) Tập nghiệm của bất phương trình là \(\left( {0;\dfrac{1}{3}} \right)\) \( \Rightarrow a = 0;{\mkern 1mu} {\mkern 1mu} b = \dfrac{1}{3}\).
Vậy \(T = 3a - 2b = 3.0 - 2.\dfrac{1}{3} = {\rm{\;}} - \dfrac{2}{3}\).
Chọn D.
Đề thi giữa HK2 môn Toán 12 năm 2023-2024
Trường THPT Lạc Long Quân