ADMICRO
Cho tứ diện \(OABC\) có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc. Biết \(OA = OB = OC = a\), tính diện tích tam giác \(ABC\).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 9
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiDễ thấy \(\Delta OAB = \Delta OAC = \Delta OBC\,\,\left( {c.g.c} \right)\)\( \Rightarrow AB = AC = BC\)
\( \Rightarrow \) Tam giác \(ABC\) đều cạnh \(AB = \sqrt {O{A^2} + O{B^2}} \)\( = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\({S_{ABC}} = \frac{{{{\left( {a\sqrt 2 } \right)}^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{2}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK