ADMICRO
Cho hàm số \(f\left( x \right) = \frac{1}{{{x^2} + 1}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 4
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiTXĐ: \(D = \mathbb{R}\)
Ta có \(f'\left( x \right) = {\left( {\frac{1}{{{x^2} + 1}}} \right)^\prime } = - \frac{{2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)
Xét \(f'\left( x \right) > 0 \Leftrightarrow \frac{{ - 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} > 0\) \( \Leftrightarrow - 2x > 0 \Leftrightarrow x < 0\)
Vậy \(S = \left( { - \infty ;0} \right)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK