ADMICRO
Cho tứ diện \(ABCD\) có \(AC = a,\) \(BD = 3a\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AD\) và \(BC.\) Biết \(AC\) vuông góc với\(BD\). Tính độ dài đoạn thẳng \(MN\) theo \(a.\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiGọi P là trung điểm của AC. Khi đó ta có:
+ NP là đường trung bình của tam giác ABC nên NP = \(\frac{1}{2}\)AC = \(\frac{a}{2}\) và NP // AC.
+ MP là đường trung bình của tam giác ABD nên MP = \(\frac{1}{2}\)BD = \(\frac{{3a}}{2}\) và MP // BD.
Mà \(AC \bot BD\,\,\left( {gt} \right)\) nên \(NP \bot MP \Rightarrow \Delta MNP\) vuông tại P.
Áp dụng định lí Pytago trong tam giác vuông MNP có:
\(MN = \sqrt {M{P^2} + N{P^2}} \)\( = \sqrt {\frac{{9{a^2}}}{4} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt {10} }}{2}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK