Nếu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaacbaGaa8hzaiaadIha % aSqabeqaniabgUIiYdGcqaaaaaaaaaWdbiabg2da9maalaaabaGaaG % ymaaqaaiaadIhaaaGaey4kaSIaciiBaiaac6gacaWG4bGaey4kaSIa % am4qaaaa!45B0! \int {f\left( x \right)dx} = \frac{1}{x} + \ln x + C\) thì f(x) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqadaqaamaalaaabaGaaGymaaqaaiaadIhaaaGaey4kaSIaciiB % aiaac6gacaWG4bGaey4kaSIaam4qaaGaayjkaiaawMcaamaaCaaale % qabaGccWaGGBOmGikaaiabg2da9iabgkHiTmaalaaabaGaaGymaaqa % aiaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaaca % aIXaaabaGaamiEaaaacqGH9aqpdaWcaaqaaiaadIhacqGHsislcaaI % XaaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaaaaaa!4EEA! {\left( {\frac{1}{x} + \ln x + C} \right)^\prime } = - \frac{1}{{{x^2}}} + \frac{1}{x} = \frac{{x - 1}}{{{x^2}}}\) suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamiEaiab % gkHiTiaaigdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaaaaaa!3F06! f\left( x \right) = \frac{{x - 1}}{{{x^2}}}\) là hàm cần tìm