Hàm số nào sau đây không có đạo hàm trên \(\mathbb{R}\) ?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{aligned} &\text { Ta có: } y=|x-1|, \text { do đó: } y=\left\{\begin{array}{ll} x-1, & x \geq 1 \\ 1-x, & x<1 \end{array}\right. \text { khi đó: } y^{\prime}=\left\{\begin{array}{ll} 1, & x>1 \\ -1, & x<1 \end{array}\right.\\ &\text { Tại } x=1: y^{\prime}\left(1^{+}\right)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x-1}{x-1}=1 .\\ &y^{\prime}\left(1^{-}\right)=\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{1-x}{x-1}=-1 \end{aligned}\)
Do \(\text { Do } y^{\prime}\left(1^{+}\right) \neq y^{\prime}\left(1^{+}\right)\) nên hàm số không có đạo hàm tại 1.