Giải bất phương trình: \(\displaystyle 2\log _2^3x + 5\log _2^2x + {\log _2}x - 2 \ge 0\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(\displaystyle t = {\log _2}x\), ta có bất phương trình \(\displaystyle 2{t^3} + 5{t^2} + t - 2 \ge 0\)
\(\displaystyle \Leftrightarrow (t + 2)(2{t^2} + t - 1) \ge 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l} - 2 \le t \le - 1\\t \ge \frac{1}{2}\end{array} \right.\)
Suy ra \(\displaystyle \left[ \begin{array}{l} - 2 \le {\log _2}x \le - 1\\{\log _2}x \ge \frac{1}{2}\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}{2^{ - 2}} \le x \le {2^{ - 1}}\\x \ge {2^{\frac{1}{2}}}\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}\frac{1}{4} \le x \le \frac{1}{2}\\x \ge \sqrt 2 \end{array} \right.\)
Vậy tập nghiệm của bất phương trình đã cho là: \(\displaystyle \left[ {\frac{1}{4};\frac{1}{2}} \right] \cup \left[ {\sqrt 2 ; + \infty } \right)\).