50 câu hỏi 60 phút
Cho A= \(\left( {\begin{array}{*{20}{c}} 1&0&0\\ { - 3}&1&0\\ 2&1&3 \end{array}} \right),B = \left( {\begin{array}{*{20}{c}} 2&{ - 1}&3\\ 0&1&4\\ 0&0&1 \end{array}} \right)\).Tính det(3AB)
162
18
6
20
Ta có:
\(z = \frac{{1 - i\sqrt 3 }}{{ - 1 + i}} = \frac{{2(\frac{1}{2} - i\frac{{\sqrt 3 }}{2})}}{{\sqrt 2 ( - \frac{1}{{\sqrt 2 }} + i\frac{1}{{\sqrt 2 }})}} = \frac{2}{{\sqrt 2 }}\frac{{\cos ( - \frac{\pi }{3}) + i\sin ( - \frac{\pi }{3})}}{{\cos (\frac{{3\pi }}{4}) + i\sin (\frac{{3\pi }}{4})}}\)
\(= \sqrt 2 \left[ {\cos \left( { - \frac{\pi }{3} - \frac{{3\pi }}{4}} \right) + i\sin \left( { - \frac{\pi }{3} - \frac{{3\pi }}{4}} \right)} \right] = \sqrt 2 \left[ {\cos \left( { - \frac{{13\pi }}{{12}}} \right) + i\sin \left( { - \frac{{13\pi }}{{12}}} \right)} \right]\)
Vậy argument của z là \(\varphi = \frac{{ - 13\pi }}{{12}}\)