Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {\sin ^3}x - 3{\cos ^2}x - m\sin x - 1\) đồng biến trên đoạn \(\left[ {\pi ;\frac{{3\pi }}{2}} \right]\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(y = f\left( x \right) = {\sin ^3}x + 3{\sin ^2}x - m\sin x - 4\left( 1 \right)\)
Đặt \(t = {\mathop{\rm s}\nolimits} {\rm{inx}}\), do \(x \in \left[ {\pi ;\frac{{3\pi }}{2}} \right] \Rightarrow t \in \left[ { - 1;0} \right]\)
Hàm số (1) trở thành \(y = g\left( t \right) = {t^3} + 3{t^2} - mt - 4\left( 2 \right)\)
Hàm số (1) đồng biến trên \(\left[ {\pi ;\frac{{3\pi }}{2}} \right]\) khi và chỉ khi hàm số (2) nghịch biến trên [-1;0]\( \Leftrightarrow g'\left( t \right) \le 0,\forall t \in \left[ { - 1;0} \right]\) (g'(t)=0 tại hữu hạn điểm)
Hàm số \(y = g\left( t \right) = {t^3} + 3{t^2} - mt - 4\) trên [-1;0], ta có \(g'\left( t \right) = 3{t^2} + 6t - m\)
Suy ra:
\(\begin{array}{l}
g'\left( t \right) \le 0,\forall t \in \left[ { - 1;0} \right]\\
\Leftrightarrow 3{t^2} + 6t - m \le 0,\forall t \in \left[ { - 1;0} \right]\\
3{t^2} + 6t \le m,\forall t \in \left[ { - 1;0} \right]
\end{array}\)
Xét hàm số \[y = h\left( t \right) = 3{t^2} + 6t\) trên đoạn [-1;0]
Ta có \(h'\left( t \right) = 6t + 6 \ge 0,\forall t \in \left[ { - 1;0} \right]\) suy ra h(t) đồng biến trên [-1;0]
\(\mathop {{\rm{max}}}\limits_{\left[ { - 1;0} \right]} h\left( t \right) = h\left( 0 \right) = 0\)
Tức \(g'\left( t \right) \le 0,\forall t \in \left[ { - 1;0} \right] \Leftrightarrow \mathop {\max }\limits_{\left[ { - 1;0} \right]} h\left( t \right) \le m,\forall t \in \left[ { - 1;0} \right]\). Do đó có \(m \ge 0\)
Hàm số (1) đồng biến trên \(\left[ {\pi ;\frac{{3\pi }}{2}} \right]\) khi và chỉ khi \(m \in \left[ {0; + \infty } \right)\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Bắc Ninh lần 2