Một khối pha lê gồm một hình cầu \(\left( {{H_1}} \right)\) bán kính \(R\) và một hình nón \(\left( {{H_2}} \right)\) có bán kính đáy và đường sinh lần lượt là \(r,l\) thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau (hình vẽ). Biết tổng diện tích mặt cầu \(\left( {{H_1}} \right)\) và diện tích toàn phần của hình nón \(\left( {{H_2}} \right)\) là \(91c{m^2}.\) Tính diện tích của khối cầu \(\left( {{H_1}} \right).\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\left\{ \begin{array}{l}r = \frac{1}{2}l\\l = \frac{3}{2}R\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}r = \frac{1}{2}.\frac{3}{2}R = \frac{3}{4}R\\l = \frac{3}{2}R\end{array} \right.\)
Diện tích toàn phần của hình nón là \({S_1} = \pi rl + \pi {r^2} = \pi \left( {\frac{3}{4}R} \right).\frac{3}{2}R + \pi {\left( {\frac{3}{4}R} \right)^2} = \pi \frac{{27}}{{16}}{R^2}\)
Diện tích mặt cầu là \({S_2} = 4\pi {R^2}\).
Theo bài ra ta có: \({S_1} + {S_2} = 91 \Leftrightarrow \pi \frac{{27}}{{16}}{R^2} + 4\pi {R^2} = 91 \Leftrightarrow \frac{{91}}{{16}}\pi {R^2} = 91 \Leftrightarrow \pi {R^2} = 16\).
Vậy diện tích mặt cầu là \({S_2} = 4\pi {R^2} = 4.16 = 64\,\,\left( {c{m^2}} \right)\).
Chọn C.