Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\) . Tam giác \(SAB\) cân tại \(S\) có \(SA = SB = 2a\) nằm trong mặt phẳng vuông góc với đáy \(ABCD\) . Gọi \(\alpha \) là góc giữa \(SD\) và mặt phẳng đáy \((ABCD)\). Mệnh đề nào sau đây đúng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(H\) là trung điểm của \(AB \Rightarrow SH \bot AB\).
Ta có: \(\left( {SAB} \right) \bot \left( {ABCD} \right),\;\;SH \bot AB\)\( \Rightarrow SH \bot \left( {ABCD} \right).\)
\( \Rightarrow \angle \left( {SD,\;\left( {ABCD} \right)} \right) = \angle \left( {SD,\;HD} \right) = \angle SDH = \alpha .\)
Áp dụng định lý Pytago với các tam giác vuông \(SAH,\;\;ADH\) ta có:
\(\begin{array}{l}SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {4{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt {15} }}{2}.\\DH = \sqrt {A{H^2} + A{D^2}} = \sqrt {{a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt 5 }}{2}.\\ \Rightarrow \tan \alpha = \frac{{SH}}{{DH}} = \frac{{a\sqrt {15} }}{2}:\frac{{a\sqrt 5 }}{2} = \sqrt 3 .\end{array}\)
Chọn A.