Một hình nón có đỉnh \(S\), đáy là đường tròn \(\left( C \right)\) tâm \(O\), bán kính \(R\) bằng với đường cao của hình nón. Tỉ số thể tích của hình nón và hình cầu ngoại tiếp hình nón bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì hình nón có bán kính \(R\) và chiều cao \(h\) bằng nhau nên \(h = R\) và thể tích hình nón đã cho là \({V_n} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {R^2}.R = \frac{1}{3}\pi {R^3}\)
Cắt hình nón bởi mặt phẳng đi qua trục ta được thiết diện là tam giác cân \(SAB\) có \(SH = h = R = HB = \frac{{BA}}{2}\) nên \(\Delta SAB\) vuông tại \(S\) .
Khi đó \(H\) là tâm đường tròn ngoại tiếp tam giác \(SAB\) và \(H\) cũng là tâm mặt cầu ngoại tiếp hình nón đỉnh \(S.\)
Nên bán kính mặt cầu là \(HS = R\) nên thể tích hình cầu này là \({V_c} = \frac{4}{3}\pi {R^3}\)
Suy ra \(\frac{{{V_n}}}{{{V_c}}} = \frac{{\frac{1}{3}\pi {R^3}}}{{\frac{4}{3}\pi {R^3}}} = \frac{1}{4}\) .
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Minh Xuân