Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số \(f\left( x \right) = \left| {m\left( {{x^2} - 2x + 3} \right) - 5m + 1} \right|\) trên đoạn [0;3] bằng 7. Tổng các phần tử của S bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(t = {x^2} - 2x + 3\) vì \(x \in \left[ {0;\,3} \right]\) nên \(t \in \left[ {2;\,6} \right]\).
Ta có \(\mathop {\max }\limits_{\left[ {0;\,3} \right]} \left| {m\left( {{x^2} - 2x + 3} \right) - 5m + 1} \right| = 7 \Leftrightarrow \mathop {\max }\limits_{\left[ {2;\,6} \right]} \left| {mt - 5m + 1} \right| = 7\)
\( \Leftrightarrow \max \left\{ {\left| { - 3m + 1} \right|,\left| {m + 1} \right|} \right\} = 7 \Leftrightarrow \frac{1}{2}\left( {\left| { - 3m + 1 + m + 1} \right| + \left| { - 3m + 1 - m - 1} \right|} \right) = 7\).
\( \Leftrightarrow \frac{1}{2}\left( {\left| { - 2m + 2} \right| + \left| { - 4m} \right|} \right) = 7 \Leftrightarrow \left[ \begin{array}{l} m = - 2\\ m = \frac{8}{3} \end{array} \right.\)
Vậy có 2 giá trị \(m = - 2,\,m = \frac{8}{3}\) thỏa mãn và tổng của chúng bằng \(\frac{2}{3}\).