Cho phương trình \(m{.16^x} - 2\left( {m - 2} \right){.4^x} + m - 3 = 0.\) Tập hợp tất cả các giá trị dương của \(m\) để phương trình đã cho có hai nghiệm phân biệt là khoảng \(\left( {a;\;b} \right).\) Tổng \(a + 2b\) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \({4^x} = t\;\;\left( {t > 0} \right)\)
Khi đó ta có phương trình: \(m{t^2} - 2\left( {m - 2} \right)t + m - 3 = 0\;\;\left( * \right)\)
Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow pt\;\left( * \right)\) có hai nghiệm dương phân biệt
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta ' > 0\\ - \dfrac{b}{a} > 0\\\dfrac{c}{a} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {m - 2} \right)^2} - m\left( {m - 3} \right) > 0\\\dfrac{{m - 2}}{m} > 0\\\dfrac{{m - 3}}{m} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\ - m + 4 > 0\\\left[ \begin{array}{l}m > 2\\m < 0\end{array} \right.\\\left[ \begin{array}{l}m > 3\\m < 0\end{array} \right.\end{array} \right. \Leftrightarrow 3 < m < 4 \Rightarrow \left\{ \begin{array}{l}a = 3\\b = 4\end{array} \right..\\ \Rightarrow T = a + 2b = 3 + 2.4 = 11.\end{array}\)
Chọn A.