Tổng tất cả các giá trị thực của tham số m để hàm số \(y = 3{x^3} + 2\left( {m + 1} \right){x^2} - 3mx + m - 5\) có hai điểm cực trị \({x_1},\;{x_2}\) đồng thời \(y\left( {{x_1}} \right).y\left( {{x_2}} \right) = 0\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiHàm số \(y = 3{x^3} + 2\left( {m + 1} \right){x^2} - 3mx + m - 5\) có 2 điểm cực trị đồng thời \(y\left( {{x_1}} \right)y\left( {{x_2}} \right) = 0\) khi và chỉ khi phương trình \(3{x^3} + 2\left( {m + 1} \right){x^2} - 3mx + m - 5 = 0\) (1) có đúng 2 nghiệm phân biệt.
Ta có:
\(\begin{array}{l}3{x^3} + 2\left( {m + 1} \right){x^2} - 3mx + m - 5 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {3{x^2} + \left( {2m + 5} \right)x + 5 - m} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\3{x^2} + \left( {2m + 5} \right)x + 5 - m = 0\,\,\left( * \right)\end{array} \right.\end{array}\)
(1) có đúng 2 nghiệm phân biệt khi và chỉ khi:
TH1: (*) có nghiệm kép khác 1
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta = {\left( {2m + 5} \right)^2} - 12\left( {5 - m} \right) = 0\\3 + 2m + 5 + 5 - m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 32m - 35 = 0\\m \ne - 13\end{array} \right. \Leftrightarrow m = \dfrac{{ - 8 \pm 3\sqrt {11} }}{2}\).
TH2: (*) có 2 nghiệm phân biệt trong đó có 1 nghiệm \(x = 1\).
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta = {\left( {2m + 5} \right)^2} - 12\left( {5 - m} \right) > 0\\3 + 2m + 5 + 5 - m = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 32m - 35 > 0\\m = - 13\end{array} \right. \Leftrightarrow m = - 13\).
Vậy có 3 giá trị của m thỏa mãn. Khi đó \(\sum m = \dfrac{{ - 8 + 3\sqrt {11} }}{2} + \dfrac{{ - 8 - 3\sqrt {11} }}{2} - 13 = - 21\).
Chọn D.