Cho khối lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Các điểm E và \(F\) lần lượt là trung điểm của C’B’ và C’D’. Mặt phẳng (AEF) cắt khối lập phương đã cho thành hai phần, gọi \({V_1}\) là thể tích khối chứa điểm A’ và \({V_2}\) là thể tích khối chứa điểm C’. Khi đó \(\dfrac{{{V_1}}}{{{V_2}}}\) là.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(G = EF \cap A'B',\,\,H = EF \cap A'D',\,\,M = AG \cap BB',\,\,N = AH \cap DD'\).
Khi đó ta có \({V_1} = {V_{A.A'GH}} - {V_{M.B'GE}} - {V_{N.D'FH}}\)
Áp dụng định lí Ta-lét ta có: \(\dfrac{{B'G}}{{C'F}} = \dfrac{{B'E}}{{C'E}} = 1 \Rightarrow B'G = C'F = \dfrac{a}{2}\).
\( \Rightarrow {S_{B'GE}} = \dfrac{1}{2}B'G.B'E = \dfrac{1}{2}.\dfrac{a}{2}.\dfrac{a}{2} = \dfrac{{{a^2}}}{8}\).
Áp dụng định lí Ta-lét ta lại có \(\dfrac{{MB'}}{{AA'}} = \dfrac{{GB'}}{{GA'}} = \dfrac{1}{3} \Rightarrow MB' = \dfrac{1}{3}AA' = \dfrac{a}{3}\).
\( \Rightarrow {V_{M.B'GE}} = \dfrac{1}{3}.\dfrac{a}{3}.\dfrac{{{a^2}}}{8} = \dfrac{{{a^3}}}{{72}}\). Hoàn toàn tương tự ta chứng minh được \({S_{D'FH}} = \dfrac{{{a^2}}}{8};\,\,ND' = \dfrac{a}{3} \Rightarrow {V_{N.D'FH}} = \dfrac{{{a^3}}}{{72}}\). Ta có: \({S_{A'GH}} = {S_{A'B'C'D'}} + {S_{B'GE}} + {S_{D'FH}} - {S_{C'EF}} = {a^2} + \dfrac{{{a^2}}}{8} + \dfrac{{{a^2}}}{8} - \dfrac{{{a^2}}}{8} = \dfrac{{9{a^2}}}{8}\)
\( \Rightarrow {V_{A.A'GH}} = \dfrac{1}{3}.a.\dfrac{{9{a^2}}}{8} = \dfrac{{3{a^3}}}{8}\).
\(\begin{array}{l} \Rightarrow {V_1} = {V_{A.A'GH}} - {V_{M.B'GE}} - {V_{N.D'FH}} = \dfrac{{3{a^3}}}{8} - \dfrac{{{a^3}}}{{72}} - \dfrac{{{a^3}}}{{72}} = \dfrac{{25{a^3}}}{{72}}\\ \Rightarrow {V_2} = {V_{ABCD.A'B'C'D'}} - {V_1} = {a^3} - \dfrac{{25{a^3}}}{{72}} = \dfrac{{47{a^3}}}{{72}}\end{array}\)
Vậy \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{25}}{{47}}\).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Thanh Xuân