Hỏi có tất cả bao nhiêu giá trị nguyên của m để đồ thị hàm số \(y = 2{x^3} - 3\left( {m + 3} \right){x^2} + 18mx - 8\) tiếp xúc với trục hoành?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có : \(y' = 6{x^2} - 6\left( {m + 3} \right)x + 18m\).
Để đồ thị hàm số đã cho tiếp xúc với trục hoành thì hệ phương trình \(\left\{ \begin{array}{l}2{x^3} - 3\left( {m + 3} \right){x^2} + 18mx - 8 = 0\,\,\,\left( 1 \right)\\6{x^2} - 6\left( {m + 3} \right) + 18m = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\) có nghiệm.
\(\left( 2 \right) \Leftrightarrow {x^2} - \left( {m + 3} \right)x + 3m = 0\) có \(\Delta = {\left( {m + 3} \right)^2} - 12m = {\left( {m - 3} \right)^2}\), do đó phương trình (2) có 2 nghiệm \(\left[ \begin{array}{l}x = m\\x = 3\end{array} \right.\)
+) Với \(x = 3\) ta có: \(\left( 1 \right) \Leftrightarrow 54 - 27\left( {m + 3} \right) + 54m - 8 = 0 \Leftrightarrow m = \dfrac{{35}}{{27}}\).
+) Với \(x = m\) ta có: \(\left( 1 \right) \Leftrightarrow 2{m^3} - 3{m^3} - 9{m^2} + 18{m^2} - 8 = 0 \Leftrightarrow - 3{m^3} + 9{m^2} - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = 4 \pm 2\sqrt 6 \end{array} \right.\).
Vậy chỉ có 1 giá trị nguyên của m thỏa mãn yêu cầu bài toán là \(m = 1\).
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Thanh Xuân