Biết hệ số của \({{x}^{2}}\) trong khai triển của \({{\left( 1-3x \right)}^{n}}\) là \(90.\) Tìm \(n\,\,?\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện : \(n\ge 2;\ \ n\in {{N}^{*}}.\)
Xét khai triển \({{\left( 1-3x \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}{{.1}^{n\,-\,k}}.{{\left( -\,3x \right)}^{k}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{\left( -\,3 \right)}^{k}}{{x}^{k}}.\)
Hệ số của \({{x}^{2}}\) ứng với \(k=2\,\,\Rightarrow \,\,C_{n}^{2}.{{\left( -\,3 \right)}^{2}}=90\Leftrightarrow \,\,C_{n}^{2}=10\Leftrightarrow \frac{n!}{2!\left( n-2 \right)!}=10\)
\(\begin{array}{l}
\Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2\left( {n - 2} \right)!}} = 10 \Leftrightarrow {n^2} - n = 20\\
\Leftrightarrow \left[ \begin{array}{l}
n = 5\;\;\left( {tm} \right)\\
n = - 4\;\;\left( {ktm} \right)
\end{array} \right. \Leftrightarrow n = 5.
\end{array}\)
Chọn D