ADMICRO
Rút gọn biểu thức \(A = \dfrac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{a^4.\sqrt[7]{{{a^{ - 5}}}}}}\) với \(a>0,\) ta được kết quả \(A={{a}^{\frac{m}{n}}},\) trong đó \(m,\,\,n\in {{\mathbb{N}}^{*}}\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây là đúng ?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có
\(A = \dfrac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{a^4.\sqrt[7]{{{a^{ - 5}}}}}} = \dfrac{{{a^{\frac{7}{3}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.{a^{ - \frac{5}{7}}}}} = \dfrac{{{a^6}}}{{{a^{\frac{{23}}{7}}}}} = {a^{\frac{{19}}{7}}} = {a}^{\frac{m}{n}} \Rightarrow \left\{ \begin{array}{l}
m = 19\\
n = 7
\end{array} \right.\)
Vậy \({{m}^{2}}-{{n}^{2}}=312.\)
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK