Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)=\dfrac{1}{2{{e}^{x}}+3}\) thỏa mãn \(F\left( 0 \right)=10.\) Tìm \(F\left( x \right).\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(F\left( x \right)=\int{f\left( x \right)\,dx}=\int{\frac{dx}{2{{e}^{x}}+3}}=\int{\frac{{{e}^{x}}}{2{{e}^{2x}}+3{{e}^{x}}}dx}.\)
Đặt \({{e}^{x}}=t\Rightarrow {{e}^{x}}dx=dt.\)
\(\begin{align} & \Rightarrow I=\int{\frac{dt}{2{{t}^{2}}+3t}=\frac{1}{3}\int{\left( \frac{1}{t}-\frac{2}{2t+3} \right)dt=\frac{1}{3}\left( \ln t-\ln \left( 2t+3 \right) \right)}}+C \\ & \Rightarrow F\left( x \right)=\frac{1}{3}\left( x-\ln \left( 2{{e}^{x}}+3 \right) \right)+C. \\ \end{align}\)
Mà \(F\left( 0 \right)=10\) suy ra \(C-\frac{\ln 5}{3}=10\Leftrightarrow C=10+\frac{\ln 5}{3}.\)
Vậy \(F\left( x \right)=\frac{1}{3}\left( x-\ln \left( 2{{e}^{x}}+3 \right) \right)+10+\frac{\ln 5}{3}.\)
Chọn D