Xét bài toán: Tính giới hạn \(L = \mathop {\lim }\limits_{n \to 1} \frac{{\mathop {(e}\nolimits^{\sin x} - 1)(1 - \cos 2x)}}{{\arcsin x.\ln (1 + \mathop x\nolimits^2 )}}\)
Một sinh viên giải bài toán này theo mấy bước dưới đây:
Bước 1: Áp dụng quy tắc thay vô cùng bé tương đương, giới hạn trở thành: \(L = \mathop {\lim }\limits_{x \to 1} \frac{{\sin x.2\mathop x\nolimits^2 }}{{x.\mathop x\nolimits^2 )}}\)
Bước 2: Thay tiếp sinx bởi x và rút gọn ta được: \(L = \mathop {\lim }\limits_{x \to 1} \frac{{x.2\mathop x\nolimits^2 }}{{x.\mathop x\nolimits^2 }} = \mathop {\lim }\limits_{x \to 1} 2\) \(L = \mathop {\lim }\limits_{x \to 1} \frac{{x.2\mathop x\nolimits^2 }}{{x.\mathop x\nolimits^2 }} = \mathop {\lim }\limits_{x \to 1} 2\)
Bước 3: Vậy giới hạn cần tính là L = 2
Lời giải đó đúng hay sai? Nếu sai thì sai từ bước nào?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án