Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
Để xét tính chẵn – lẻ của hàm số, ta làm như sau:
Bước 1: Tìm tập xác định \(D\) của hàm số, khi đó:
p class="MsoBodyText">- Nếu \(D\) là tập đối xứng (tức \(\forall x \in D \Rightarrow - x \in D\)), thì ta thực hiện tiếp bước 2.
- Nếu \(D\) không phải tập đối xứng (tức là \(\exists x \in D\) mà \( - x \notin D\)) thì ta kết luận hàm số không chẵn không lẻ.
Bước 2: Xác định \(f\left( { - x} \right)\):
- Nếu \(f\left( { - x} \right) = f\left( x \right),\forall x \in D\) thì kết luận hàm số là hàm số chẵn.
- Nếu \(f\left( { - x} \right) = - f\left( x \right),\forall x \in D\) thì kết luận hàm số là hàm số lẻ.
- Nếu không thỏa mãn một trong hai điều kiện trên thì kết luận hàm số không chẵn không lẻ.
Lời giải chi tiết:
Nhận xét: Hàm số lẻ có đồ thị đối xứng qua gốc tọa độ.
- Xét: Hàm số \(y = \cot 4x.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{{k\pi }}{4},k \in \mathbb{Z}} \right\}\)là tập đối xứng. Do đó \(\forall x \in {\rm{D}} \Rightarrow - x \in {\rm{D}}{\rm{.}}\)
Ta có \(f\left( { - x} \right) = \cot \left( { - 4\pi } \right) = - \cot 4\pi = - f\left( x \right)\) là hàm số lẻ.
- Xét: Hàm số \(y = \frac{{\sin x + 1}}{{\cos x}}.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)là tập đối xứng. Do đó \(\forall x \in {\rm{D}} \Rightarrow - x \in {\rm{D}}{\rm{.}}\)
Ta có \(f\left( { - x} \right) = \frac{{\sin \left( { - x} \right) + 1}}{{\cos \left( { - x} \right)}} = \frac{{ - \sin x + 1}}{{\cos x}} \ne \left\{ {f\left( x \right), - f\left( x \right)} \right\}\)Hàm số không có tính chẵn, lẻ
- Xét: Hàm số \(y = {\tan ^2}x.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\)là tập đối xứng. Do đó \(\forall x \in {\rm{D}} \Rightarrow - x \in {\rm{D}}{\rm{.}}\)
Ta có \(f\left( { - x} \right) = {\tan ^2}\left( { - x} \right) = {\tan ^2}x = f\left( x \right)\) là hàm số chẵn.
- Xét: Hàm số \(y = \left| {\cot x} \right|.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\)là tập đối xứng. Do đó \(\forall x \in {\rm{D}} \Rightarrow - x \in {\rm{D}}{\rm{.}}\)
Ta có \(f\left( { - x} \right) = \left| {\cot \left( { - x} \right)} \right| = \left| {\cot x} \right| = f\left( x \right)\) là hàm số chẵn.
Đáp án A
Đề thi giữa HK1 môn Toán 11 năm 2023 - 2024
Trường THPT Trần Hưng Đạo