Gọi \({S_n}\) là tổng \(n\) số hạng đầu tiên trong cấp số cộng \(\left( {{a_n}} \right).\) Biết \({S_6} = {S_9},\) tỉ số \(\frac{{{a_3}}}{{{a_5}}}\) bằng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\).
Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\).
Khi đó : \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hoặc \({S_n} = \frac{{n\left[ {2{u_1} + (n - 1)d} \right]}}{2} = n{u_1} + \frac{{n\left( {n - 1} \right)}}{2}d\) .
Lời giải chi tiết:
Ta có: \({S_6} = {S_9} \Leftrightarrow \frac{{6\left( {2{a_1} + 5d} \right)}}{2} = \frac{{9\left( {2{a_1} + 8d} \right)}}{2} \Leftrightarrow {a_1} = - 7d.\)
Vậy \(\frac{{{a_3}}}{{{a_5}}} = \frac{{{a_1} + 2d}}{{{a_1} + 4d}} = \frac{{ - 7d + 2d}}{{ - 7d + 4d}} = \frac{5}{3}.\)
Đáp án C
Đề thi giữa HK1 môn Toán 11 năm 2023 - 2024
Trường THPT Trần Hưng Đạo