Doanh thu bán hàng trong 20 ngày được lựa chọn ngã̃u nhiên của một cửa hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):
Tứ phân vị thứ nhất của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
Để tính tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm, trước hết ta xác định nhóm chứa \({Q_1}\), giả sử đó là nhóm thứ \(p\) : \(\left[ {{a_p};{a_{p + 1}}} \right)\). Khi đó:
\({Q_1} = {a_p} + \frac{{\frac{n}{4} - \left( {{m_1} + \ldots + {m_{p - 1}}} \right)}}{{{m_p}}} \cdot \left( {{a_{p + 1}} - {a_p}} \right),\)
trong đó, \(n\) là cỡ mẫu, \({m_p}\) là tần số nhóm \(p\), với \(p = 1\) ta quy ước \({m_1} + \ldots + {m_{p - 1}} = 0\).
Lời giải chi tiết:
Tứ phân vị thứ nhất của dãy số liệu là \(\frac{1}{2}\left( {{x_4} + {x_5}} \right)\) thuộc nhóm \(\left[ {7;9} \right)\) nên tứ phân vị thứ nhất của mẫu số liệu là \({Q_1} = 7 + \frac{{\frac{{20}}{4} - 2}}{7}\left( {9 - 7} \right) = 7,86\).
Đáp án B
Đề thi giữa HK1 môn Toán 11 năm 2023 - 2024
Trường THPT Trần Hưng Đạo