Giải phương trình \(\dfrac{1}{{\sin 2x}} + \dfrac{1}{{\cos 2x}} = \dfrac{2}{{\sin 4x}}\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(\sin 4x \ne 0 \Leftrightarrow x \ne k\dfrac{\pi }{4}\;\left( {k \in \mathbb{Z}} \right)\)
Ta có: \(\dfrac{1}{{\sin 2x}} + \dfrac{1}{{\cos 2x}} = \dfrac{2}{{\sin 4x}}\) \( \Leftrightarrow \dfrac{{\sin 2x + \cos 2x}}{{\sin 2x.\cos 2x}} = \dfrac{2}{{\sin 4x}}\)
\( \Leftrightarrow \frac{{\sin 2x + \cos 2x}}{{\sin 2x\cos 2x}} = \frac{2}{{2\sin 2x\cos 2x}}\)
\( \Leftrightarrow \sin 2x + \cos 2x = 1\)
\(\begin{array}{l}
\Leftrightarrow \sqrt 2 \sin \left( {2x + \frac{\pi }{4}} \right) = 1\\
\Leftrightarrow \sin \left( {2x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}\\
\Leftrightarrow \left[ \begin{array}{l}
2x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\
2x + \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \frac{\pi }{4} + k\pi
\end{array} \right.
\end{array}\)
So sánh điều kiện, phương trình vô nghiệm.
Chọn đáp án C.
Đề thi HK1 môn Toán 11 năm 2021-2022
Trường THPT Trần Khai Nguyên