Cho ba số dương a, b, c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu thức \(P = \frac{{\sqrt {{a^2} + 8bc} + 3}}{{\sqrt {{{\left( {2a + c} \right)}^2} + 1} }}\) có dạng \(x\sqrt y \left( {x,y \in N} \right).\) Hỏi x + y bằng bao nhiêu?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(a + c = 2b \\\Leftrightarrow a = 2b - c \\\Leftrightarrow {a^2} = {\left( {2b - c} \right)^2} \\\Leftrightarrow {a^2} + 8bc = 4{b^2} + 4bc + {c^2}\\ \Leftrightarrow {a^2} + 8bc = {\left( {2b + c} \right)^2}\)
Do đó \(P = \frac{{2b + c + 3}}{{\sqrt {{{\left( {2b + c} \right)}^2} + 1} }} = \frac{{t + 3}}{{\sqrt {{t^2} + 1} }} \le \sqrt {10} \) với t = 2b + c, dấu bằng xảy ra khi \(2b + c = \frac{1}{3}.\)
Vậy x + y = 11.
Đề ôn tập Chương 3 Đại số & Giải tích lớp 11 năm 2021
Trường THPT Trưng Vương