ADMICRO
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{{x^2} + 4x + 5}}{{x + 2}}\) tại điểm có hoành độ x = 0
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo saiTa có: \(y = \dfrac{{{x^2} + 4x + 5}}{{x + 2}}\) \( = \dfrac{{\left( {{x^2} + 4x + 4} \right) + 1}}{{x + 2}}\) \( = \dfrac{{{{\left( {x + 2} \right)}^2} + 1}}{{x + 2}}\) \( = x + 2 + \dfrac{1}{{x + 2}}\)
\( \Rightarrow y' = 1 - \dfrac{1}{{{{\left( {x + 2} \right)}^2}}}\)
Tại \(x = 0\) thì \(y'\left( 0 \right) = 1 - \dfrac{1}{{{{\left( {0 + 2} \right)}^2}}} = \dfrac{3}{4}\) và \(y\left( 0 \right) = 0 + 2 + \dfrac{1}{{0 + 2}} = \dfrac{5}{2}\)
Phương trình tiếp tuyến: \(y = \dfrac{3}{4}\left( {x - 0} \right) + \dfrac{5}{2}\) hay \(y = \dfrac{3}{4}x + \dfrac{5}{2}\).
ZUNIA9
AANETWORK