ADMICRO
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({x^2} + {y^2} + {z^2} – \left( {2m – 2} \right)x + 3my + \left( {6m – 2} \right)z – 7 = 0\). Gọi R là bán kính của \(\left( S \right)\), giá trị nhỏ nhất của R bằng:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo saiMặt cầu \(\left( S \right)\) có tâm \(I\left( {m – 1; – \frac{{3m}}{2};1 – 3m} \right)\).
Ta có \(R = \sqrt {{{(m – 1)}^2} + {{\left( { – \frac{{3m}}{2}} \right)}^2} + {{(1 – 3m)}^2} + 7} = \sqrt {\frac{{49{m^2}}}{4} – 8m + 9} = \sqrt {{{\left( {\frac{7}{2}m – \frac{8}{7}} \right)}^2} + \frac{{377}}{{49}}} \ge \frac{{\sqrt {377} }}{7}\)
Vậy \({R_{\min }} = \frac{{\sqrt {377} }}{7} \Leftrightarrow m = \frac{{16}}{{49}}\)
ZUNIA9
AANETWORK