ADMICRO
Tìm số tự nhiên n, biết \({3^n}C_n^0 - {3^{n - 1}}C_n^1 + {3^{n - 2}}C_n^2 - {3^{n - 3}}C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n = 2048.\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\( {3^n}.C_n^0 - {3^{n - 1}}.C_n^1 + {3^{n - 2}}.C_n^2 - {3^{n - 3}}.C_n^3 + ... + {\left( { - 1} \right)^n}.C_n^n = 2048\)
+)Xét khai triển:
\( {\left( {x - 1} \right)^n} = C_n^0.{x^n}.{\left( { - 1} \right)^0} + C_n^1.{x^{n - 1}}.{\left( { - 1} \right)^1} + C_n^2.{x^{n - 2}}.{\left( { - 1} \right)^2} + ... + C_n^n.{x^0}.{\left( { - 1} \right)^n}\)
+)Thay x=3vào 2 vế
\(\begin{array}{l} {\left( {3 - 1} \right)^n} = C_n^0{.3^n} - C_n^1{.3^{n - 1}} + ... + C_n^n{.3^0}.{\left( { - 1} \right)^n}\\ \Leftrightarrow {2^n} = 2048 \to n = 11 \end{array}\)
ZUNIA9
AANETWORK