ADMICRO
Tìm đạo hàm cấp hai của hàm số sau:
\(y = {1 \over {\sqrt x }}.\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\(\begin{array}{l}
y' = \dfrac{{ - \left( {\sqrt x } \right)'}}{{{{\left( {\sqrt x } \right)}^2}}} = - \dfrac{{\dfrac{1}{{2\sqrt x }}}}{x} = - \dfrac{1}{{2x\sqrt x }}\\
y'' = - \dfrac{1}{2}.\dfrac{{ - \left( {x\sqrt x } \right)'}}{{{{\left( {x\sqrt x } \right)}^2}}}\\
= \dfrac{1}{2}.\dfrac{{\left( x \right)'\sqrt x + x\left( {\sqrt x } \right)'}}{{{x^2}.x}}\\
= \dfrac{1}{{2{x^5}}}\left( {\sqrt x + x.\dfrac{1}{{2\sqrt x }}} \right)\\
= \dfrac{1}{{2{x^3}}}.\dfrac{{2x + x}}{{2\sqrt x }}\\
= \dfrac{{3x}}{{4{x^3}\sqrt x }} = \dfrac{3}{{4{x^2}\sqrt x }}
\end{array}\)
ZUNIA9
AANETWORK