Tích phân \(\int\limits_0^\pi {\left( {3x + 2} \right){{\cos }^2}x\,{\rm{d}}x} \) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(I = \int\limits_0^\pi {\left( {3x + 2} \right){{\cos }^2}x\,{\rm{d}}x} \). Ta có:
\( = \frac{1}{2}\int\limits_0^\pi {\left( {3x + 2} \right)\left( {1 + \cos 2x} \right)\,{\rm{d}}x} \)
\( = \frac{1}{2}\left[ {\int\limits_0^\pi {\left( {3x + 2} \right){\rm{d}}x} + \int\limits_0^\pi {\left( {3x + 2} \right)\cos 2x\,{\rm{d}}x} } \right] = \frac{1}{2}\left( {{I_1} + {I_2}} \right)\)
\({I_1} = \int\limits_0^\pi {\left( {3x + 2} \right){\rm{d}}x} = \left. {\left( {\frac{3}{2}{x^2} + 2x} \right)} \right|_0^\pi = \frac{3}{2}{\pi ^2} + 2\pi \)
\({I_2} = \int\limits_0^\pi {\left( {3x + 2} \right)\cos 2x\,{\rm{d}}x} \). Dùng tích phân từng phần
Đặt \(\left\{ \begin{array}{l}u = 3x + 2\\{\rm{d}}v = \cos 2x\,{\rm{d}}x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\rm{d}}u = 3\,{\rm{d}}x\\v = \frac{1}{2}\sin 2x\end{array} \right.\)
Khi đó
\({I_2} = \left. {\frac{1}{2}\left( {3x + 2} \right)\sin 2x} \right|_0^\pi – \frac{3}{2}\int\limits_0^\pi {\sin 2x\,{\rm{d}}x} \)
\( = 0 + \left. {\frac{3}{4}\left( {cos2x} \right)} \right|_0^\pi = 0\)
Vậy \(I = \frac{1}{2}\left( {\frac{3}{2}{\pi ^2} + 2\pi } \right) = \frac{3}{4}{\pi ^2} + \pi \)