ADMICRO
Giải phương trình \(f'\left( x \right) = g\left( x \right)\) với \(f\left( x \right) = 1 - {\sin ^4}3x\) và \(g\left( x \right) = \sin 6x\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\(\begin{array}{l}
f'\left( x \right) = - 4{\sin ^3}3x.\left( {\sin 3x} \right)'\\
= - 4{\sin ^3}3x.3\cos 3x\\
= - 12{\sin ^3}3x\cos 3x\\= - 6{\sin ^2}3x.2\sin 3x\cos 3x\\
= - 6{\sin ^2}3x\sin 6x\\
f'\left( x \right) = g\left( x \right)\\
\Leftrightarrow - 6{\sin ^2}3x\sin 6x = \sin 6x\\
\Leftrightarrow \sin 6x\left( {1 + 6{{\sin }^2}3x} \right) = 0\\
\Leftrightarrow \sin 6x = 0\left( {do\,1 + 6{{\sin }^2}3x > 0} \right)\\
\Leftrightarrow 6x = k\pi \\
\Leftrightarrow x = \dfrac{{k\pi }}{6}
\end{array}\)
ZUNIA9
AANETWORK