Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4bGa % ey4kaSIaaGymaaqaaiaadIhacqGHRaWkcaaIXaaaaiaabsgacaWG4b % Gaeyypa0JaamyyaiabgUcaRiGacYgacaGGUbWaaSaaaeaacaWGIbaa % baGaaGOmaaaaaSqaaiaaiodaaeaacaaI1aaaniabgUIiYdaaaa!4A38! \int\limits_3^5 {\frac{{{x^2} + x + 1}}{{x + 1}}{\rm{d}}x = a + \ln \frac{b}{2}} \) với a, b là các số nguyên. Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9iaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbaaaa!3B7E! S = {b^2} - a\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4bGa % ey4kaSIaaGymaaqaaiaadIhacqGHRaWkcaaIXaaaaiaabsgacaWG4b % aaleaacaaIZaaabaGaaGynaaqdcqGHRiI8aaaa!43D3! \int\limits_3^5 {\frac{{{x^2} + x + 1}}{{x + 1}}{\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaa8 % qCaeaadaqadaqaaiaadIhacqGHRaWkdaWcaaqaaiaaigdaaeaacaWG % 4bGaey4kaSIaaGymaaaaaiaawIcacaGLPaaacaqGKbGaamiEaaWcba % GaaG4maaqaaiaaiwdaa0Gaey4kIipaaaa!4390! = \int\limits_3^5 {\left( {x + \frac{1}{{x + 1}}} \right){\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaaq % GaaeaadaqadaqaamaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaa % aOqaaiaaikdaaaGaey4kaSIaciiBaiaac6gadaabdaqaaiaadIhacq % GHRaWkcaaIXaaacaGLhWUaayjcSdaacaGLOaGaayzkaaaacaGLiWoa % daqhaaWcbaGaaG4maaqaaiaaiwdaaaaaaa!4700! = \left. {\left( {\frac{{{x^2}}}{2} + \ln \left| {x + 1} \right|} \right)} \right|_3^5\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG % ioaiabgUcaRiGacYgacaGGUbWaaSaaaeaacaaIZaaabaGaaGOmaaaa % aaa!3C0B! = 8 + \ln \frac{3}{2}\)
Suy ra : a =8; b =3 ;\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9iaaiodadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI4aGaeyyp % a0JaaGymaaaa!3CF2! S = {3^2} - 8 = 1\)