Trong mặt phẳng toạ độ Oxy, cho (E) có phương trình \(\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1,\,\,\left( a,b>0 \right)\) với ab = 100 và đường tròn \(\left( C \right):{{\left( x-1 \right)}^{2}}+{{\left( y+4 \right)}^{2}}=10.\) Tỉ số diện tích elip (E) so với diện tích hình tròn (C) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có
\(\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1,\left( a,b>0 \right)\Rightarrow y=\frac{b}{a}\sqrt{{{a}^{2}}-{{x}^{2}}}.\)
Diện tích (E) là \({{S}_{\left( E \right)}}=4\int\limits_{0}^{a}{\frac{b\sqrt{{{a}^{2}}-{{x}^{2}}}}{a}dx}=4\frac{b}{a}\int\limits_{0}^{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}\)
Đặt \(x=a\sin t,t\in \left[ -\frac{\pi }{2};\frac{\pi }{2} \right]\Rightarrow dx=a\operatorname{costdt}.\)
Đổi cận \(x=0\Rightarrow t=0;x=a\Rightarrow t=\frac{\pi }{2}\)
\({{S}_{\left( E \right)}}=4\frac{b}{a}\int\limits_{0}^{\frac{\pi }{2}}{{{a}^{2}}.{{\cos }^{2}}tdt=2ab\int\limits_{0}^{\frac{\pi }{2}}{\left( 1+\cos 2t \right)dt}=\pi ab=100\pi }\)
Mà ta có \({{S}_{\left( C \right)}}=\pi .{{R}^{2}}=10\pi .\)
Vậy \(\frac{{{S}_{\left( E \right)}}}{{{S}_{\left( C \right)}}}=\frac{100}{10}=10.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Văn Trỗi lần 2