Cho số phức \(z\ne 0\) thoả mãn \(z\sqrt{3z\overline{z}+1}=\left| z \right|\left( 2+6iz \right).\) Mệnh đề nào dưới đây đúng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(z\sqrt{3z\overline{z}+1}=\left| z \right|\left( 2+6iz \right)\Leftrightarrow z\left( \sqrt{3z\overline{z}+1}-6i\left| z \right| \right)=2\left| z \right|.\)
Ta thấy \(\sqrt{3z\overline{z}+1}-6i\left| z \right|\) là số phức có phần thực là \(\sqrt{3z\overline{z}+1}\) và phần ảo là \(6\left| z \right|.\)
Suy ra \(\left| z \right|\left( \sqrt{3z\overline{z}+1+36{{\left| z \right|}^{2}}} \right)=2\left| z \right|\)
\(\Leftrightarrow 3z\overline{z}+1+36{{\left| z \right|}^{2}}=4\Leftrightarrow 3{{\left| z \right|}^{2}}+1+36{{\left| z \right|}^{2}}=4\Leftrightarrow {{\left| z \right|}^{2}}=\frac{1}{13}\Rightarrow \left| z \right|=\frac{\sqrt{13}}{13}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Văn Trỗi lần 2