Trong không gian cho tam giác \(ABC\) đều cạnh bằng 8, M là một điểm tùy ý thỏa mãn \(M{{A}^{2}}+M{{B}^{2}}+M{{C}^{2}}=100\). Khi đó, quỹ tích điểm \(M\) là một mặt cầu có bán kính bằng bao nhiêu?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi G là trọng tâm tam giác \(ABC\) \(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Khi đó
\(M{{A}^{2}}+M{{B}^{2}}+M{{C}^{2}}=100\)
\(\Leftrightarrow {{\left( \overrightarrow{MG}+\overrightarrow{GA} \right)}^{2}}+{{\left( \overrightarrow{MG}+\overrightarrow{GB} \right)}^{2}}+{{\left( \overrightarrow{MG}+\overrightarrow{GC} \right)}^{2}}=100\)
\(\Leftrightarrow 3{{\overrightarrow{MG}}^{2}}+2\overrightarrow{MG}.\left( \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC} \right)+{{\overrightarrow{GA}}^{2}}+{{\overrightarrow{GB}}^{2}}+{{\overrightarrow{GC}}^{2}}=100\)
\(\Leftrightarrow 3{{\overrightarrow{MG}}^{2}}+3{{\overrightarrow{GA}}^{2}}=100\left( GA=\frac{2}{3}\times \frac{8\sqrt{3}}{2}=\frac{8\sqrt{3}}{3} \right)\)
\(\Leftrightarrow {{\overrightarrow{MG}}^{2}}=12\)
\(\Leftrightarrow MG=2\sqrt{3}\).
Khi đó, quỹ tích điểm M là một mặt cầu có bán kính bằng \(2\sqrt{3}\)
Đề thi thử THPT QG môn Toán năm 2020
Trường THPT Lý Thái Tổ-Bắc Ninh lần 1