Tìm tất cả các giá trị của tham số m để hàm số \(y = \dfrac{{mx + 1}}{{x + m}}\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTXĐ : \(D = R\backslash \left\{ { - m} \right\}\)
Để hàm số đồng biến trên \(\left( {2; + \infty } \right) \Leftrightarrow \left\{ \begin{array}{l}y' > 0\\ - m \notin \left( {2; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{{m^2} - 1}}{{{{\left( {x + m} \right)}^2}}} > 0\\ - m \le 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 1\\m < - 1\end{array} \right.\\m \ge - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2 \le m < - 1\\m > 1\end{array} \right.\).
Chọn A.