Tìm tất cả các giá trị thực của tham số m sao cho phương trình \(3\sqrt {x - 1} + m\sqrt {x + 1} = 2\sqrt[4]{{{x^2} - 1}}\) có hai nghiệm thực?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐKXĐ : \(\left\{ \begin{array}{l}x - 1 \ge 0\\x + 1 \ge 0\\{x^2} - 1 \ge \end{array} \right. \Leftrightarrow x \ge 1\).
Ta có \(3\sqrt {x - 1} + m\sqrt {x + 1} = 2\sqrt[4]{{{x^2} - 1}} = 2\sqrt[4]{{x - 1}}.\sqrt[4]{{x + 1}}\)
Đặt \(\left\{ \begin{array}{l}\sqrt[4]{{x - 1}} = u\\\sqrt[4]{{x + 1}} = v\end{array} \right.\,\,\left( {u,v \ge 0} \right)\), ta có :
\(3{u^2} + m{v^2} = 2uv \Leftrightarrow 3{u^2} - 2uv + m{v^2} = 0 \Leftrightarrow 3{\left( {\dfrac{u}{v}} \right)^2} - 2\dfrac{u}{v} + m = 0\,\,\left( {\dfrac{u}{v} \ge 0} \right)\,\,\left( * \right)\,\,\left( {Do\,\,{v^2} \ne 0} \right)\)
Phương trình ban đầu có hai nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm không âm phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 1 - 3m > 0\\S = \dfrac{2}{3} > 0\\P = \dfrac{m}{3} \ge 0\end{array} \right. \Leftrightarrow 0 \le m < \dfrac{1}{3}\).
Chọn D.