ADMICRO
Hàm số \(y = {x^4} - {x^3} - x + 2019\) có bao nhiêu điểm cực trị?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiHàm số \(y = {x^4} - {x^3} - x + 2019\) có bao nhiêu điểm cực trị?
\(\begin{array}{l}y' = 4{x^3} - 3{x^2} - 1 \Rightarrow y' = 0 \Leftrightarrow 4{x^3} - 3{x^2} - 1 = 0 \Leftrightarrow x = 1\\y'' = 12{x^2} - 6x \Rightarrow y''\left( 1 \right) = 12 - 6 = 6 > 0\end{array}\)
\( \Rightarrow x = 1\) là điểm cực tiểu của hàm số.
Vậy đồ thị hàm số có 1 điểm cực trị.
Chọn D
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Võ Trường Toản
26/11/2024
28 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK