Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\)và \(B\). Biết \(SA \bot \left( {ABCD} \right)\), \(AB = BC = a\), \(AD = 2a\), \(SA = a\sqrt 2 \). Gọi \(E\) là trung điểm của \(AD\). Tính bán kính mặt cầu đi qua các điểm \(S\), \(A\), \(B\), \(C\), \(E\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét tứ giác \(ABCE\) có \(AE//BC,\,\,AE = BC = a \Rightarrow ABCE\) là hình bình hành.
Lại có \(\angle BAE = {90^0}\,\left( {\,gt} \right),\,\,AB = BC \Rightarrow ABCE\) là hình vuông cạnh \(a\).
\( \Rightarrow \) Bán kính đường tròn ngoại tiếp hình vuông \(ABCE\) là \({R_d} = \frac{{a\sqrt 2 }}{2}\).
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp \(S.ABCE\) là : \(R = \sqrt {\frac{{S{A^2}}}{4} + R_d^2} = \sqrt {\frac{{2{a^2}}}{4} + \frac{{2{a^2}}}{4}} = a\)
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Võ Trường Toản