Cho hình trụ có đáy là hai đường tròn tâm \(O\) và \(O'\), bán kính đáy bằng chiều cao và bằng \(2a\). Trên đường tròn đáy có tâm \(O\) lấy điểm \(A\), trên đường tròn tâm \(O'\) lấy điểm \(B\). Đặt \(\alpha \) là góc giữa \(AB\) và đáy. Tính \(\tan \alpha \) khi thể tích khối tứ diện \(OO'AB\) đạt giá trị lớn nhất.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiLấy điểm \(A' \in \left( {O'} \right),\,\,B' \in \left( O \right)\) sao cho \(AA',\,\,BB'\) song song với trục \(OO'\).
Khi đó ta có lăng trụ đứng \(OAB'.O'A'B\).
Ta có:
\(\begin{array}{l}{V_{OO'AB}} = {V_{OAB'.O'A'B}} - {V_{A.O'A'B}} - {V_{B.OAB'}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = {V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} = \frac{1}{3}{V_{OAB'.O'A'B}}\\ \Rightarrow {V_{OO'AB}} = \frac{1}{3}.AA'.{S_{\Delta OAB'}} = \frac{1}{6}AA'.OA.OB.\sin \angle AOB'\\ = \frac{1}{6}.2a.2a.2a.\sin \angle AOB' = \frac{1}{6}.8{a^3}\sin \angle AOB' = \frac{{4{a^3}}}{3}\sin \angle AOB'\end{array}\)
Do đó để \({V_{OO'AB}}\) lớn nhất \( \Leftrightarrow \sin \angle AOB' = 1 \Leftrightarrow \angle AOB' = {90^0} \Leftrightarrow OA \bot OB'\).
\( \Rightarrow O'A' \bot O'B \Rightarrow \Delta O'A'B\) vuông tại \(O' \Rightarrow A'B = O'A'\sqrt 2 = 2a\sqrt 2 \).
Ta có
\(\begin{array}{l}AA' \bot \left( {O'A'B} \right) \Rightarrow \angle \left( {AB;\left( {O'A'B} \right)} \right) = \angle ABA' = \alpha \\ \Rightarrow tan\alpha = \frac{{AA'}}{{A'B}} = \frac{{2a}}{{2a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\end{array}\)
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Võ Trường Toản